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a b s t r a c t

Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable

magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we

introduce an analytical expression for calculating the attraction force between two cylindrical

permanent magnets on the assumption of uniform magnetization. Although the assumption is not

fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and

measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical

magnets.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Attraction forces between permanent magnets are established
by magnetostatic interactions. When modeling magnetostatic
interactions in an array of magnetic elements, it is common
practice to initiate the energy computation by considering
interactions among elementary magnetic dipoles. This approx-
imation is acceptable when elements are distributed at large
enough distances from one another. However, when dealing with
permanent magnets utilized as, e.g., magnetic fasteners, modeling
near-contact attractive magnetostatic forces requires a more
advanced treatment that takes into account shape effects.
Magnetostatic interactions among elements of various regular
shapes are examined in analytical fashion in [1–4].

In a previous study [5], we introduced a semi-analytical
formula for the magnetostatic interaction between two uniformly
magnetized cylindrical elements of equal radius. In the present
study, we first review briefly our subsequent achievement [6] of
recasting the same formula in fully analytical form by means of
elliptic integrals. Then, keeping the assumptions of uniform
magnetization and equal cylinder radius, we calculate the
attraction force between two groups of cylindrical permanent
magnets where we assume that all the magnets are axially
magnetized (the direction of the vector of magnetization is
parallel with the axis of symmetry in each cylinder) and all the
cylinder axes are parallel. Working with 1–4 permanent cylind-
ll rights reserved.

cal University of Denmark,
rical magnets in each group we then compare our formula to
experimental data obtained by pulling apart two permanent
magnet sets while measuring continuously both the distance
between the sets and force. A force approximation for two distant
permanent cylindrical magnets is also derived. The comparison
between the force approximation and the force calculated on the
basis of the cylinder parameters is shown for various magnet
distances.

Another formula for the determination of the attraction force
between two cylindrical magnets is introduced by Agashe and
Arnold [7]. Their formula is similarly based on the assumption of
uniform magnetization in the axial direction while using a
magnetic field approximation for a cylindrical magnet [8]. We
show that for the contact force of two identical cylindrical
magnets, the formula from Ref. [7] and our expression give similar
force values in the range of aspect ratios spanned by the
experiments.
2. Expressions for magnetostatic interaction energy and
attraction forces

The attraction force between sets of magnets can be derived from
the total magnetostatic interaction energy of the system E according
to

~F ¼ �gradðEÞ: ð1Þ

We assume that all cylindrical magnets are made of the same
material characterized by saturation magnetization M. As for the
geometry, the cylindrical magnets are of equal radius R and are
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magnetized uniformly along the cylinder axis of symmetry. In our
derivations, we do not allow any magnetization vector rotation
during the interaction, which may be thought as the effect of a
strong intrinsic axial anisotropy induced by the manufacturer, nor
do we consider sets of magnets with rotated axes of symmetry.
2.1. Two cylindrical permanent magnets with a common axis

In this case, either set consists of just one cylindrical magnet.
The interacting cylinders are sketched in Fig. 1a. If we choose the
coordinate system with the z-axis along the cylinders axis, then
the attraction force acts only along z and can be expressed
according to (1) as follows:

Fz ¼ �
@E

@Z
¼ 2pm0M2R3 @Jd

@Z
; ð2Þ

where m0 is the permeability of vacuum and Jd the dipolar
coupling integral defined in [5]. Following the computational
method described in [1] the dipolar coupling integral Jd can be
expressed as

Jdðt1; t2; BÞ ¼ 2

Z þ1
0

J2
1ðqÞ

q2
sinhðqt1Þsinhðqt2Þe

�qz dq; ð3Þ

where ti ¼ ti/(2R), i ¼ 1, 2, are the aspect ratios of the two
cylinders, z ¼ Z/R is the reduced distance between the centers of
the two cylinders (see Fig. 1a) and J1(q) is a modified Bessel
function of the first kind. On the assumption that the integral in
(3) converges uniformly, we may exchange the order of
integration and derivation arriving at

Fz ¼ �8pKdR2

Z þ1
0

J2
1ðqÞ

q
sinhðqt1Þsinhðqt2Þe

�qz dq; ð4Þ

where we have introduced the magnetostatic energy constant
Kd ¼ m0M2/2 for convenience of notation. Eq. (4) is the attraction
force acting in the axial direction, while no attraction forces exist
in x and y. As for numerical evaluation of the integral in (4) it is
convenient to convert the integral to a more manageable form.
The integral is of Lipschitz–Hankel type [9] and may be expressed
analytically in terms of a combination of elliptic integrals.
Following the notation in [10] we denote the integral as
Fig. 1. A scheme of the two interacting cylindrical permanent magnets: (a) with a

common axis and (b) with parallel but displaced axes. R is the magnets radius, ti

their aspect ratios, Z the distance between their centers, Mi their magnetizations, r

their lateral displacement, and x the gap between the poles.
Aa
mnða; b; cÞ ¼

Z 1
0

xa�1e�axJmðbxÞJnðcxÞdx: ð5Þ

After rewriting the hyperbolic function in terms of exponen-
tials, the integral in (4) can be expressed as a combination of
terms of type A11

0 (o,1,1) as follows:

Fz ¼ �2pKdR2
X1

i;j¼�1

i � j � A0
11ðBþ it1 þ jt2;1;1Þ: ð6Þ

According to [9]

A0
11ðo;1;1Þ ¼

o
pk1

Eðk2
1Þ �
ð2þ 0:5o2Þk1o

2p
Kðk2

1Þ þ
1

2
; ð7Þ

where k1
2
¼ 4/(4+o2), and K and E are complete elliptic integrals of

the first and the second kind, respectively. It is worth noting that
the integral in (3) can be also expressed as combination of
complete elliptic integrals using the following relations:

Jd ¼ 2
X1

i;j¼�1

i � j � A�1
11 ðBþ it1 þ jt2;1;1Þ; ð8Þ

A�1
11 ð2o;1;1Þ ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þo2
p

3p
½ð1�o2ÞEðk2Þ þo2Kðk2Þ� �o; ð9Þ

where k2
2
¼ 1/(1+o2).

Using (6) and (7) we may calculate the contact force of two
identical cylindrical magnets. The contact force (F0) between two
magnets is defined as the attraction force with zero axial and
lateral gaps between the magnets. From Fig. 1, we can see that
zero gap corresponds to z ¼ 2t and t ¼ t1 ¼ t2. Substituting
z ¼ 2t in (6) and using (7) and the fact that A11

0 (0,1,1) ¼ 0.5 we
arrive at

F0 ¼ �8KdR2t 1

l1
½Eðl21Þ � Kðl21Þ� �

1

l2
½Eðl22Þ � Kðl22Þ�

� �
; ð10Þ

where l1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2
p

and l2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2
p

. Eq. (10) can be also
transformed into a series in powers of l1 and l2

F0 ¼ �4pKdR2t
X1
n¼1

2n

2n� 1

ð2n� 1Þ!!

ð2nÞ!!

� �2

ðl2n�1
2 � l2n�1

1 Þ: ð11Þ

The sum in (11) converges quickly for large aspect ratios t,
giving fast and reasonably accurate estimates of contact forces
between two long cylinders. However, the more general Eq. (10)
remains preferable, as it yields precise values of the contact force
for arbitrary aspect ratios without increasing the complexity of
implementation.

In a recent paper [7] another formula was derived for the
contact force, which adapted to our notation and corrected for a
typo (in Eq. (17a,17b) of [7], a ‘‘2’’ should be at the denominator of
the first term in parentheses rather than an ‘‘a’’ [11]) reads as
follows:

ðF0ÞAA

¼ �2pKdR2t 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2
p þ

1

32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4t2Þ

5
q �

3ð3þ 16t2Þ

32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4t2Þ

9
q

0
B@

1
CA:
ð12Þ

In the paragraph where we report our experimental measure-
ments, we will also show that both formulas (10) and (12) give
values close to the measured contact forces. However, (12) was
derived within a somewhat different approximation than (10),
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Fig. 2. A comparison between the force approximation, (17a), and the force

calculated according to Eq. (4), as a function of the distances between magnets

(gap parameter x in Fig. 1). The permanent magnets used have parameters:

R ¼ 1.5 mm, t ¼ 3, 6, 9 mm and saturation magnetization M ¼ 0.859 MA/m.
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and this becomes particularly evident when t is small: in the limit
t-0, the contact force per unit volume predicted by (12), that is
3/4 Kd/R, is just about 85% of the value predicted by (10), that is
4 log(2)/p Kd/R. At this stage, it is difficult to assess which of the
two formulas is closer to reality. To ascertain which of the two
may be deemed ‘‘more correct’’, we will compare both with
experimental results in Section 3.

2.2. Two laterally displaced cylindrical permanent magnets

The arrangement of magnets is shown in Fig. 1b. The distance
between axes (lateral displacement) is denoted as r. In this case,
the magnetostatic energy is

Eðr; BÞ ¼ 8pKdR3

Z þ1
0

J0
rq

R

� � J2
1ðqÞ

q2
sinhðqt1Þsinhðqt2Þe

�qB dq: ð13Þ

The energy gradient, i.e. the force, is then

Fz ¼ �8pKdR2

Z þ1
0

J0
rq

R

� � J2
1ðqÞ

q
sinhðqt1Þsinhðqt2Þe

�qB dq; ð14Þ

or in an equivalent form

Fz ¼ �2pKdR2

Z þ1
0

J0
rq

R

� � J2
1ðqÞ

q

X1

i;j¼�1

i � j � e�qðBþit1þjt2Þ dq: ð15Þ

For r ¼ 0 (the common axis case), Eq. (15) transforms into Eq.
(4).

In summary, for deriving (14) or (15) we assume uniform
magnetization that does not rotate in the presence of other
magnets. However, we fully take shape effects into account. In this
respect, no approximations were made in deriving the equations.
Eq. (14) is the key formula of this study: it is valid for any distance
between magnets and for any aspect ratio. Only in some special
cases it is worthwhile estimating the integral in (14) with further
approximations. A special case of interest is when the axial
distance between magnets in question is several times larger than
the magnet radius.

If the cylindrical magnets are far from each other, we may find
an approximation of the integral in (15) by expanding the Bessel
functions around q ¼ 0 according to their definitory power series
[12]. Then, by using z ¼ (t1+t1)/(2R)+x/R, where x is the gap
between the magnets (see Fig. 1), we obtain

Fz � �
1

2
pKdR4

X1

i;j¼0

ð�1Þiþj

ðxþ it1 þ jt2Þ
2

1�
3

2

r2

ðxþ it1 þ jt2Þ
2

" #
: ð16Þ

If, additionally, t1 ¼ t2 ¼ t and r ¼ 0 then (16) turns into

Fz � �
1

2
pKdR4 1

x2
þ

1

ðxþ 2tÞ2
�

2

ðxþ tÞ2

" #
: ð17aÞ

Eq. (17a) gives the approximate force between two distant
identical cylindrical magnets with the vectors of magnetization
lying on their common axis. Fig. 2 shows a comparison between
the force approximation (17a) and the exact force (4) for various
magnet distances, while we used permanent magnets with the
following parameters: R ¼ 1.5 mm, t ¼ 3, 6, 9 mm and
M ¼ 0.859 MA/m (corresponding to Kd ¼ 0.463 MJ/m3). Eq. (17a)
gives an erroneous approximation for small distances between the
magnets as the force values become large for close-to-zero
distance. However, for distances larger than a certain limit both
the respective formulas give force values that are fairly close to
each other. Eq. (17a) may be further simplified using
(1+e)�2E1�2e+3e2 for small e. If tox, we arrive at

Fz � �3pKdR4t2 1

x4
: ð17bÞ

This approximation corresponds to the situation when the
cylindrical magnets are replaced by dipoles, and is of very limited
validity. On the other hand, it is important to confirm that the
starting expression (15) has the expected 1/x4 asymptotic
behavior.

2.3. More than two cylindrical permanent magnets

The calculation of the attraction force between two sets of
magnets where either set has more than one magnet is rather
complex. If the permanent magnets in the first [second] group are
indexed 1, 2,y, n [n+1, n+2,y, m] then the magnetostatic energy
of interaction between the two groups reads as follows:

E ¼
Xn

i¼1

Xm

j¼nþ1

Eijðrij; zÞ; ð18Þ

where Eij is the interaction energy between magnets i and j, and rij

is their lateral separation. Then, the attraction force along z

between the two groups is as follows:

Fz ¼ �8pKdR2
Xn

i¼1

Xm

j¼nþ1

Z þ1
0

J0
rijq

R

	 

J2
1ðqÞ

q
sinhðqtiÞsinhðqtjÞe

�qB dq:

ð19Þ

2.4. A special case of permanent magnet arrangement with four

magnets in the set

Using (19), we can solve any case of permanent magnet
arrangement in either set that comply with the above-mentioned
assumptions. The case of permanent magnet arrangement we
study is shown in Fig. 3. Either set consists of four identical
magnets perpendicularly magnetized. Each cylindrical magnet in



ARTICLE IN PRESS

Fig. 4. A diagram of the calculated attraction forces versus distance for various

magnet arrangements (the individual arrangements are described in part 3). The

magnets diameter and height are 3 and 1.5 mm, respectively, and saturation

magnetization equal to 0.859 MA/m.
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the first set has its counterpart in the other set—cylindrical
magnet with which it has a common axis and the same
orientation of the magnetization vector. In either set, first-
neighbor magnets have their magnetization anti-parallel. Since
the magnets in each set are touching, the magnet axis distances
(rij) are either 2R or 2

ffiffiffi
2
p

R. Then according to (19) we arrive at

Fz ¼ �32pKdR2

Z þ1
0
½1� 2J0ð2qÞ þ J0ð2

ffiffiffi
2
p

qÞ�
J2
1ðqÞ

q
sinh2

ðqtÞe�qz dq:

ð20Þ

It is worth noting that the resulting attraction force between
the sets shown in Fig. 3 can be larger than four times the
attraction force between just two magnets. This is because the
anti-parallel overall configuration is substantially more stable
energetically than if the four magnets’ magnetizations were all
aligned. Generally, it is interesting to study the case when the
group of four magnets is periodically repeated and fills in an
infinite layer. This case will be analyzed elsewhere.

Some approximations of attraction force in (20) may be useful
for the case if the magnet sets are far from each other. In this case,
we find an approximation of the integral in (20) by expanding the
Bessel functions around q ¼ 0: 1� 2J0ð2qÞ þ J0ð2

ffiffiffi
2
p

qÞ � 0:5q4 and
J1(q)E0.5q. Substituting z ¼ (t+x)/R we obtain

Fz � �120pKdR8 1

x6
þ

1

ðxþ 2tÞ6
�

2

ðxþ tÞ6

" #
; ð21Þ

and if tox we finally get

Fz � �7!pKdR8t2 1

x8
: ð22Þ

Fig. 4 shows the diagram of the calculated attraction force
versus the distance between sets of magnets that illustrates how
the attraction force decreases with different powers of 1/x
depending on the cylindrical magnet arrangement. The case of
arrangement as in Fig. 3 is also included: the corresponding force
decreases as 1/x8, while in the case of two cylindrical magnets
with a common axis the attraction force decreases as 1/x4.
Fig. 3. A scheme of two sets of identical cylindrical permanent magnets. The

arrows show the orientation of magnetization. All the magnetization vectors and

cylinder axes are parallel.
3. Experimental results

We use NdFeB permanent magnets purchased directly from
their manufacturer Elidis sro. Our measurement of magnetic
induction with a gaussmeter (F.W.Bell, Model 6010) and Hall-
effect probe (STD61-0202-05) yields B ¼ (1.07970.008)T, corre-
sponding to a saturation magnetization M ¼ (0.85970.006) MA/
m. The magnets are shaped as cylinders with a diameter of
2R ¼ 3 mm and a height t ¼ 1.5 mm. They are magnetized axially
by the producer. The attraction force measurements are carried
out at room temperature with a tensile testing machine equipped
with a 100 N load cell (HBM, Type S2). Fig. 5 shows the
experimental setup for the measurements. The magnets are
attached to non-magnetic holders. The holders with the
magnets are clamped into the device claws with an effort to
have the magnets aligned well (parallel axis and the contact area
forms a common base). A small misalignment may result in
discrepancy between measured and calculated force values.

In the first stage of the force measurement, force is set to zero
when the magnets are far enough from each other. In the second
stage, the magnets approach each other until the force drops to
zero. At the moment of zero force, the displacement is set to zero.
In the third stage, the magnets are slowly pulled away from each
other while measuring force and stroke.

The magnets arrangements are:
(i).
 Either set is formed by two permanent magnets; all the
magnets have a common axis.
(ii).
 Either set is formed by four permanent magnets with a
common base. All magnets have a common axis.
(iii).
 Either set contains six permanent magnets stacked into a
longer cylinder of height t ¼ 9 mm. All the magnets have
again a common axis.
(iv).
 The sets arrangement is sketched in Fig. 3; the first [second]
set is formed by cylindrical magnets c1, c2, c3, c4 [c10, c20, c30,
c40].
Fig. 6 shows a comparison between the measured attraction
force and the force calculated from (4) for the cases (i–iii). The
force calculation for cases (i–iii) is carried out treating each set as
a single cylindrical magnet with height equal to the appropriate
multiple of the height of the purchased magnet (t ¼ 3, 6 and
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9 mm). We obtained a very good agreement between the
measured and the calculated forces.

Table 1 summarizes the values of the measured contact forces
and the contact forces calculated according (10) and (12).
Uncertainties in the calculated values are assigned on the basis
of the experimental error associated to the saturation
magnetization of the magnets. More specifically, since M was
measured with a 0.7% relative error, and the force depends on M2,
we assign a 1.4% relative error to the theoretical predictions.
Fig. 6. A diagram of the calculated and measured attraction force versus distance

(gap parameter x in Fig. 1) for the magnets of various lengths, t ¼ 3, 6, 9 mm with a

diameter of 3 mm and saturation magnetization equal to 0.859 MA/m.

Table 1
Measured and calculated contact forces according to (10) and (12) (expression

acquired from Ref. [7]).

Magnet shape Measured
contact force
[(N])

Contact force [N]
according to (10)

Contact force
[(N]) according
to (12)

R ¼ 1.5 mm, t ¼ 1 2.6370.03 2.7670.04 2.9270.04

R ¼ 1.5 mm, t ¼ 2 2.9170.03 3.1170.04 3.1870.04

R ¼ 1.5 mm, t ¼ 3 3.4070.03 3.2070.05 3.2370.05

The saturation magnetization is equal to 0.859 MA/m.

Fig. 5. A photograph of the experimental apparatus for the attraction force

measurement.
Both formulas (10) and (12) give values reasonably close to the
corresponding measurements. Deviations are expected because
theoretical predictions are based on the uniform magnetization
approximation, and the geometry where magnets are in close
proximity is the most sensitive on non-uniformities/multipoles.
On the other hand, we do not expect deviations that are too large,
because when magnets are in close proximity they reinforce their
respective uniformity near their contact poles. In other words, the
contact geometry is a Helmholtz-coil setup, where the field in the
vanishing gap is known to be rather uniform.

On the basis of the measurements we carried out, it turned out
impossible to determine whether the Agashe–Arnold formula (12)
or our Eq. (10) is a more realistic description of the contact force.
Predictions of both formulas, for the geometry considered, are
within the experimental error, and differ from the experimental
values by roughly the same amount. While Eq. (10) appears to be a
tiny bit closer to the experiments in the first two cases reported in
Table 1, Eq. (12) seems slightly better in the third case. We also
note that deviations do not appear systematic: predictions
overestimate the measurement in the first two cases, while they
underestimate the contact force in the third case.

To compare further the two theoretical predictions beyond the
range of aspect ratios available in the experiments, we plot in
logarithmic scale the absolute value of the contact force per unit
volume (measured in Kd/R) as predicted by formulas (10) and (12).
The comparison is shown in Fig. 7, where the experimentally
available aspect ratios are indicated by vertical dashed lines.
Inspection of the plot reveals the AA-formula (12) deviates
substantially from (10) as soon as the aspect ratio is below 1.
While (10) goes monotonically to the asymptotic value of 4 log(2)/
p ¼ 0.883 when t ¼ 0, (12) appears to cross a maximum (0.776 for
t ¼ 0.225, which happens to be very close with the only
intersection between the two curves occurring at t ¼ 0.252),
and then slowly decreases to its asymptotic value of 3/4 ¼ 0.750
when t ¼ 0. Since there is no physical reason justifying the
functional behavior of (12) when the aspect ratio approaches zero,
we conclude that the maximum, as well as the different
asymptotic value, are a result of approximations inherent in the
formalism adopted in [7] ceasing to be physically sound. In this
respect, we can claim that (10) is a better approximation to reality
than (12), in spite of the very close predictions in Table 1 that were
more a result of the limited range of aspect ratios we were able to
explore experimentally than an actual similarity between the
formulas’ predictions.

Fig. 8 shows a comparison between the measured attraction
force and the force calculated from (20) for the magnet
Fig. 7. A diagram of the contact force per unit volume (measured in Kd/R) as

predicted by formulas (10) and (12) for various aspect ratios t.
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Fig. 8. A diagram of the calculated and measured attraction forces versus distance

of the magnets arrangement shown in Fig. 3. The magnets diameter and height are

3 and 1.5 mm, respectively, and saturation magnetization equal to 0.859 MA/m.
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arrangement (iv). Also, in this case the agreement between the
measured and the calculated forces is more than satisfactory. The
largest deviation, barely visible in the figure, is again observed
when the magnets are in contact.
4. Conclusions

We have presented formulas for calculating attraction forces
between two cylindrical permanent magnets or two sets of
permanent magnets on the assumptions of: (i) uniform magne-
tization in each cylinder and (ii) parallel magnetization directions
and magnet axes. For the case of long distance interaction, we re-
obtained a simple formula, sometimes utilized in the literature,
which approximates the force between permanent magnets. The
attraction force measurements were carried out at room tem-
perature combining suitably a series of NdFeB magnets with a
diameter of 3 mm and a height of 1.5 mm. The measured force was
in excellent agreement (below 1%) with that calculated using our
expressions in spite of the seemingly unrealistic assumption of
uniform magnetization, except when the gap between sets was
very small (contact force) where deviations were closer to 5%. The
difference between the measured and the calculated contact
forces (Table 1) may be explained by a combination of: (i) non-
perfect magnet alignment when measuring forces, (ii) using a
stack of magnets rather than a single longer one, (iii) spread in the
saturation magnetization of each individual magnet, and (iv) the
simplifying assumption of uniform magnetization in the cylind-
rical magnets.
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